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Abstract. Polymer adsorption on fractally rough walls of varying dimensionality is studied by
renormalization group methods on hierarchical lattices. Exact results are obtained for deterministic
walls. The adsorption transition is found continuous for low dimensiondw of the adsorbing wall and
the corresponding crossover exponentφ monotonically increases withdw , eventually overcoming
previously conjectured bounds. Fordw exceeding a threshold valued∗w , φ becomes one and the
transition changes to first order.d∗w > dsaw , the fractal dimension of the polymer in the bulk. An
accurate numerical approach to the same problem with random walls gives evidence of the same
scenario.

1. Introduction

The adsorption on an attracting impenetrable wall is perhaps the most elementary transition
involving a single interacting polymer in solution [1]. High dilution in a good solvent is
the realistic condition for which this problem can be directly relevant. The fundamental
character and the obvious relation with more complex applications, like colloid stabilization
or surface protection [2], have resulted in a great deal of attention being directed towards
polymer adsorption in recent years, and much information is presently available on this
problem. It is now well understood that this transition can be interpreted as a surface critical
phenomenon [1, 3]: at the adsorption temperature,Ta, the conformational statistics of the
polymer shows a multicritical behaviour with peculiar geometric features and with crossovers
to the high-T desorbed and the low-T adsorbed regimes. For a chain withN monomers atTa the
average number of adsorbed monomers,〈M〉, scales as〈M〉 ∝ Nφ , whereφ (0< φ < 1) is the
crossover exponent. In the high- and low-T regimes,〈M〉 ∝ N0 and〈M〉 ∝ N , respectively.
φ is known exactly in 2D for a polymer in both good [4] and theta [5] solvents, and in 3D in a
theta solvent, in which case logarithmic corrections are present [6]. Further exact results have
been obtained for models defined on fractal lattices, like Sierpinski gaskets [7–9], which are
now recognized as an important context in which to test theoretical ideas concerning polymer
statistics.

Most explicit results obtained so far on polymer adsorption refer to cases in which the wall
is smooth and flat. In this paper we address the adsorption transition on a fractal substrate.
This problem has applicative interest. Indeed, in many processes involving polymers, highly
corrugated, irregular walls may be present. In addition, there are interesting theoretical
implications. A polymer in a good solvent is known to possess a self-similar stochastic
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geometry, with a well defined fractal dimensiondsaw. Once such a polymer is placed in
contact with a fractal wall, a competition between the two geometries arises. This holds, in
particular, for cases in 2D or in hierarchical lattices, for which the wall is topologically 1D
like the polymer. As we see, the above competition leads to a modification of the universal
properties of the adsorption transition, or, in more extreme situations, to a drastic and quite
unusual suppression of its continuous character. The parameter triggering such modifications
is the fractal dimensiondw of the wall. This scenario also has analogies with another situation
in which competition between two similar scaling geometries has been studied recently. A
fluctuating interface between two coexisting phases is self-affine [10]. If it is placed in contact
with a rough wall of similar geometry, depinning from the wall changes from continuous to first
order as soon as the roughness exponent of the wall exceeds the anisotropy index of interface
fluctuations in the bulk [11,12].

An approach to our problem on a Euclidean lattice would meet with very serious
difficulties. Once a given profile is assigned to a fractal wall exerting short-range attraction on
a self-avoiding chain (SAW), exact enumerations would handle too short chains, unable to feel
the fractal corrugations of the wall on a sufficiently wide range of length scales. On the other
hand, Monte Carlo simulations meet the serious obstacle that, in the low-T region, sampling
over polymer configurations becomes very problematic, due to the highly irregular wall, with
valleys and hills at all scales. For these reasons adsorption on fractal walls is certainly one of
those phenomena for which the study on simplified, hierarchical lattices is, at present, the only
realistic way to gain an at least qualitative understanding. Two recent works studied adsorption
on fractal boundaries of SAWs within fractal lattices [13,14]. Most emphasis there was put on
the existence of violations of bounds suggested in previous work [7] forφ. It was also realized
that fractal lattices with peculiar connectivities at the borders could give rise to an interesting
dependence ofφ on the interaction parameters. However, such nonuniversality, met also with
flat walls, is specific of the lattices considered, which do not mimic generic situations. Indeed,
it is natural to expect universal scaling at the adsorption transition for a given (universal) bulk
criticality and a given boundary geometry (no matter whether flat or rough). Changes ofφ

should be expected upon varyingdw. Indeed, this is the dimension pertaining to the surface
critical phenomenon to which adsorption amounts.

In this paper we study adsorption in three hierarchical lattices leading to renormalization
group (RG) recursions of increasing complexity and, supposedly, to results of increasing
qualitative value with reference to realistic situations on 2D Euclidean lattice. In section 2,
considering the simplest of the above mentioned lattices, we introduce our RG approach
and calculate the critical adsorption exponents for deterministic fractal walls with different
dimensions. In section 3 adsorption exponents, for both deterministic and random fractal
walls in the other two more complex lattices, are discussed. Concluding remarks are finally
reported in section 4.

2. A simple model

First let us consider the latticeLA, whose construction rule is sketched in figure 1(a). Measuring
the lattice ‘linear size’ in terms of the number of steps of the shortest path between top and
bottom vertices, at any application of the construction rule, this size and the total number of
lattice bonds are multiplied by factors 2 and 5, respectively. Thus,LA has a fractal dimension
dL = ln 5/ ln 2 = 2.322. . . . At any level,n, in the construction ofLA, allowed polymer
configurations correspond to SAWs between the top and bottom vertices. In a grand canonical
formulation, associated to each step is a monomer fugacityω = exp(µ/T ). An attracting
impenetrable wall is modelled as a particular SAW which cannot be trespassed by the polymer.
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Figure 1. (a) Construction rule ofLA. The length of the diagonal step is different from the other
lattice steps only for drawing convenience. (b)–(d) Construction rules of deterministic fractal walls
(heavy lines) inLA. The allowed polymer configurations develop to the right of the walls.

The polymer interacts with the wall through an attractive contact potential−ε. Thus, SAW
steps on the wall acquire an extra fugacityk = exp(ε/T ) (k > 1).

In the absence of the wall, through then = 0 lattice there is a unique walk of unit
length and the restricted grand partition function for SAWs joining top to bottom is simply
B0 = ω. At the n = 1 level there are two pairs of SAWs of lengths 2 and 3, respectively.
The corresponding partition function isB1 = 2ω2 + 2ω3 = 2B2

0 + 2B3
0 ≡ B(B0). If we

denote byBn the SAW partition at leveln, we can writeBn+1 ≡ B(Bn) andB can be seen
as a generating function of the bulk partition function. The recursion forBn has a repulsive
fixed point atB∗ = (√3− 1)/2 = 0.366. . . which corresponds to the bulk critical point of
the SAWs. Thus,ωc = B∗ is the SAW critical fugacity. For annth level lattice the average
number of SAW steps is given by〈NB〉n = ω

Bn

∂Bn
∂ω

. At ω = ωc we have〈NB〉n = λnB with

λB = dB(B)
dB |B∗ = 2.268. . . . Therefore, taking into account that the lattice size isLn = 2n, we

conclude that critical SAWs are fractal with dimensiondsaw = ln λB/ ln 2= 1.181. . . .
Now let us consider a wall throughLA. In figures 1(b) and (c) we sketch two examples of

deterministic rules by which wall geometries with opposite features can be realized. Iteration
of the rule sketched in figure 1(b) produces a wall whose length isLn. Thus, this wall
is characterized by a dimensiondw = 1 and we regard it as flat. In contrast, the rule in
figure 1(c) produces a fractal wall with dimensiondw = ln 3/ ln 2 = 1.585. . . which is also
the highest realizable inLA. Walls with intermediate dimensions can be obtained by using
either deterministic, or random sequences of the two rules above at progressing levels of lattice
construction. As an example, let us consider a case in which the wall is realized by means of
the rules depicted in figures 1(c) and (b) for odd and evenn, respectively. The resulting wall
has a dimensiondw = ln 6/ ln 4 = 1.292. . . and is sketched in figure 1(d). For n = 1 the
SAW partition function in the presence of the wall is given by

X1 = X3
0 +X0B0 ≡ X2(B0, X0) (1)

whereX0 = kω is the partition of the unique SAW in then = 0 lattice. Atn = 2 we have

X2 = X2
1 + 2X1B

2
1 +B2

1 ≡ X1(B1, X1). (2)

X1 andX2 are now the generating functions of the SAW partitions corresponding to the rules
depicted in figures 1(b) and (c), respectively. At any other construction level, the form of
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the recursions is the same as in equation (1) or (2) forn even or odd, respectively. Focusing
attention on evenn, if Xn denotes the SAW partition at leveln, we have

Xn+2 = X2(B(Bn),X1(Bn,Xn)). (3)

ForB = ωc the bulk recursion is at its repulsive fixed point, while (3) has an attractive fixed
point atX = 0.1536. . . and a repulsive one atX ≡ xc ≡ 0.7249. . .†. Another attractive fixed
point is atX = ∞. While the first fixed point controls the SAW ordinary desorbed regime,
the second one corresponds to the adsorption critical point which is then located at a wall
attractionkc = xc/ωc = 1.9806. . . . The critical exponents can be obtained by linearization
of the RG flow around the fixed point(ωc, xc). In doing this, together with the recursion (3)
we also have to considerBn+2 = B(B(Bn)) and the matrix

R ≡
 ∂Bn+2

∂Bn

∣∣∣
ωc,xc

∂Bn+2
∂Xn

∣∣∣
ωc,xc

∂Xn+2
∂Bn

∣∣∣
ωc,xc

∂Xn+2
∂Xn

∣∣∣
ωc,xc

 = ( λ2
B 0
a λ2

1

)
(4)

with

λ1 =
[
∂Xn+2

∂Xn

∣∣∣∣
ωc,xc

]1/2

=
[
∂X2

∂X

∣∣∣∣
ωc,X1(ωc,xc)

· ∂X1

∂X

∣∣∣∣
ωc,xc

]1/2

= 1.7412. . . (5)

and a = ∂Xn+2
∂Bn
|ωc,xc . If we put 〈N〉n = ω

Xn

∂Xn
∂ω

and 〈M〉n = k
Xn

∂Xn
∂k

, at the transition,

the average number of steps on the wall grows as〈M〉n = λn1. Thus, 〈M〉n ∼ L
y1
n with

y1 = ln λ1/ ln 2= 0.8001. . . . On the basis of (4) and (5) one can also write

〈N〉n = λn1 + aλ2
1
λn−2
B − λn−2

1

λ2
B − λ2

1

. (6)

This relation shows that, as long asλ1 6 λB , in the limit of largen, 〈N〉n scales asλnB . In
other terms〈N〉n ∼ L

y
n with y = yB . On the other hand, ifλ1 > λB , 〈N〉n ∼ λn1 and

y = ln λ1/ ln 2 = y1. In this latter case, which, as we see below, is never realized forLA,
one must findy1 = dw because〈M〉n ∼ 〈N〉n, which again meansφ = 1. At the adsorption
fixed point of (3) (k = kc), λ1 < λB : thus, there, the SAW length in the presence of a wall
scale as in the bulk without a wall. The previous results allow one to write〈M〉n ∼ 〈N〉φn with
φ = y1/yB = 0.6773. . . .

For anyk > kc the SAWs are adsorbed on the wall and the scalings of both〈M〉n and
〈N〉n are controlled by a fixed point at infinity. In this case both quantities are proportional
to Ldwn . On the other hand, fork < kc, we are in the normal regime in which〈N〉n ∼ L

yB
n .

For SAWs on Euclidean lattice, in this last regime,〈M〉n saturates to a constant value. In
contrast, the analysis of recursion (3) aroundX = 0.1536. . . shows that〈M〉n ∼ L−1.0844...

n .
This unphysical behaviour is due to the pathological increase of coordination withn → ∞
typical of hierarchical lattices. The above discussion can, of course, be adapted to the case of
oddn levels, with the same scaling results.

The method just illustrated can be easily generalized to fractal walls with a whole range of
dw. In fact, adsorption on walls with different dimensions can be obtained by simply changing
the form of the recursion. In general, in place of (3), we can havep andq nested applications
of the generating functionsX1 andX2, respectively. For example, forp = 2 andq = 3 we
could have

Xn+p+q = X1(B(B(B(B(Bn)))),X2(B(B(B(Bn))),X2(B(B(Bn)),X1(B(Bn),X2(Bn,Xn)))))

(7)

† Fixed points and other numerical results were obtained withMathematica.
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Table 1. SAW adsorption on deterministic fractal walls inLA. Wall rules are applied in the reported
order.dL = ln 5/ ln 2= 2.3219,ωc = 0.3660,dsaw = 1.1814.

dw kc φ

X1 1 1 0
X2,X1,X1,X1,X1,X1 1.0975 1.7398 0.3856
X2,X1,X1,X1,X1 1.1170 1.7725 0.4230
X2,X1,X1,X1 1.1462 1.8165 0.4736
X2,X1,X1 1.1950 1.8798 0.5483
X2,X2,X1,X1,X1 1.2340 2.0267 0.5957
X2,X1 1.2925 1.9806 0.6773
X2,X2,X1 1.3900 2.1051 0.7904
X2 1.5850 2.1753 1a

a λ1 = λB .

which corresponds to applying successivelyX2, X1, X2, X2, andX1. The corresponding wall
hasdw = (p ln 2+q ln 3)

(p+q) ln 2 . For givenp andq we can apply the transformationsX1 andX2 in
different orders, keepingdw fixed. In general, not only the fixed points of the composite
transformations, but also their exponents can depend on the chosen order. Based on extensive
tests we verified that the variations ofφ due to different orderings are generally less than 1%.
This is a nice feature of this model and those we study in the forthcoming section: to a very
good approximation, we can conclude that exponents likeφ depend only ondw. We would
expect this property to hold strictly in more realistic modellizations.

For a transformation like in equation (7)

λ1 =
[
∂Xn+p+q

∂Xn

∣∣∣∣
ωc,xc

]1/(p+q)

=
[

p∏
i=1

∂X1

∂X

∣∣∣∣
ωc,xi

·
q∏
j=1

∂X2

∂X

∣∣∣∣
ωc,xj

]1/(p+q)

(8)

wherexc, xi andxj depend on the specific form ofXn+p+q , i.e. on the order in which the
successive transformations are applied. As already mentioned,dw can be varied between 1
and ln 3/ ln 2 in LA. The lower limit corresponds top = 1 andq = 0. In this case we have
kc = 1 andλ1 = 1 which impliesφ = 0. In fact, for this case of ‘flat’ boundary, the adsorption
transition fixed point merges with the desorbed regime fixed point and becomes marginally
unstable. This is a peculiar feature due to the relatively too simple structure ofLA. On the

other hand, the upper limit corresponds top = 0 andq = 1 for which one haskc =
√

3 +
√

3
andλ1 ≡ λB . In this case we have exactlyφ = 1. For intermediate wall dimensions,φ is a
monotonic increasing function ofdw. This, at least as long asdw increments are not so small
to confer the relative importance to the possible variations ofφ due to different orders in the
successive application ofX1 andX2. A summary of our results forLA is reported in table 1.

φ < 1 implies continuity of the adsorption transition. In contrast, forφ = 1, at the
transition〈M〉n ∝ 〈N〉n, as for an adsorbed polymer. In factλ1 > λB implies a discontinuity
of limn→∞[〈M〉n/〈N〉n] at the adsorption point, i.e. a first-order transition. This discontinuity,
found only fordw = ln 3/ ln 2 in LA, anticipates a more general result, valid for the other
lattices we considered: we find below that a sufficiently highdw can drive polymer adsorption
first order. ForLA the threshold condition for discontinuous adsorption occurs precisely when
dw is at its maximum possible value. In general we denote byd∗w the value ofdw above which
φ = 1.
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Figure 2. (a) Construction rule ofLB . (b)–(c) Construction rules of deterministic fractal walls
(heavy lines) inLB .

Figure 3. (a) Construction rule ofLC . (b)–(d) Construction rules of deterministic fractal walls
(heavy lines) inLC .

3. Results for deterministic and random walls in other lattices

To show that the scenario described above is not just a peculiarity ofLA and to further investigate
the change of transition order, we considered SAW adsorption on fractal walls also withLB
andLC , sketched in figures 2(a) and 3(a), respectively.LB has a diamond structure similar to
that ofLA, but with a higher ramification anddL = 3. The bulk SAW partition function obeys
the recursionBn+1 = 3B2

n + 4B3
n + 2B4

n with ωc = B∗ = 0.2441. . . anddsaw = 1.1995. . . . In
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Table 2. SAW adsorption on deterministic fractal walls inLB . dL = 3, ωc = 0.2441,
dsaw = 1.1995.

dw kc φ

X1 1 3.3049 0.6613

X2,X1,X1,X1
5
4 3.3476 0.8124

X2,X1,X1
4
3 3.3500 0.8628

X2,X1
3
2 3.3549 0.9637

X2,X2,X1
5
3 3.3629 1a

X2,X2,X2,X1
7
4 3.3652 1a

X2 2 3.3663 1a

a λ1 > λB .

figures 2(b) and (c) we report two construction rules generating walls with dimensionsd(1)w = 1
andd(2)w = 2, respectively. The corresponding generating functions are

X1(X,B) ≡ X2 + 2XB2 +B2 (9)

X2(X,B) ≡ XB +X2B +X4. (10)

For fractal walls obtained by suitably alternating the two rules, table 2 shows again thatφ

monotonically increases withdw. However, now for anydw > 1.67 we haveφ = 1. Thus,
whendw > d∗w ' 1.67 adsorption becomes discontinuous.

Finally, we considerLC for which dL = ln 12/ ln 4 = 1.792. . .†. The bulk recursion
is nowBn+1 = 6B4

n + 4B6
n + 2B8

n with a critical fixed point atωc = B∗ = 0.5175. . . and
dsaw = 1.0649. . . . Unfortunately, neitherωc, nordsaw are too close to the values appropriate
for the 2D square lattice, 0.378. . . and 4

3 [3, 16], respectively. This occurs in spite of the
fact thatLC seems to mimic the square lattice structure at the local level well.LC offers
more possibilities of wall construction rules. In figures 3(b)–(d) we show three examples with
respective generating functions

X1(X,B) ≡ 2B4 +X4 + 2X2B2 + 2X2B4 (11)

X2(X,B) ≡ XB3 +X2B4 +X5B3 +X2B2 +X3B +X6 (12)

X3(X,B) ≡ X3B +X5B +X8. (13)

The corresponding walls haved(1)w = 1, d(2)w = ln 6/ ln 4 = 1.292. . . andd(3)w = ln 8/ ln 4 =
1.5. Results forLC are reported in table 3. Fordw = 1 adsorption is continuous and
φ = 0.5437. . . is not too far from1

2, theφ value for SAW adsorption on a smooth wall in 2D [4].
For increasingdw, φ monotonically increases and reaches a unit value atdw = d∗w ' 1.4. For
dw > d∗w, φ = 1 and the transition is always first order. Note that the first-order transitions
found fordw > d∗w in tables 2 and 3 correspond toλ1 > λB . From tables 1–3 we also learn that,
upon increasingdw, kc increases, as a rule, up to small fluctuations caused by our peculiar recipe
for varyingdw. This indicates that increasing roughness makes adsorption more difficult.

Our results suggest an interesting scenario for the adsorption transition on fractal walls in
more realistic models. First of all, for a continuous adsorption transition,φ is an increasing
function of the wall dimensiondw. Moreover, for high enoughdw, φ eventually reaches the
value one, its upper bound marking the onset of first-order adsorption. This fact is in open
contrast with the results of Bouchaud and Vannimenus [7] which, on the basis of scaling

† This lattice andLA have been used for studying SAWs in random environment [15].
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Table 3. SAW adsorption on deterministic fractal walls inLC . dL = ln 12/ ln 4 = 1.7925,
ωc = 0.5175,dsaw = 1.0649.

dw kc φ

X1 1 1.3279 0.5437
X2 1.2925 1.4715 0.8140
X3,X2 1.3962 1.6287 0.9741
X3,X3,X2 1.4308 1.6514 1a

X3 1.5 1.6565 1a

a λ1 > λB .

arguments, suggested the bounds

1− 1

dsaw
(dL − dw) 6 φ 6 dw

dL
. (14)

We find thatφ does not satisfy (14). Also, the lower bound in (14) is manifestly violated for
low enoughdw. Of course, here we deal with a hierarchical lattice, which is not fully adequate
to consistently represent all the features of fractal objects. On the other hand, the bounds in
(14) were obtained by relying on formal analogies with cases of regular geometry. Similar
violations of these bounds were reported previously, for both flat and fractal boundaries [9,13].
Here we identify in the monotonicity ofφ and in the tendency of the transition to turn first
order asdw increases the physical reasons for the upper bound violation. In the investigation
of [14] first-order adsorption was found for a particular choice of lattice and fractal boundary
among the many considered.A posteriori, we can understand that result as due to the fact that
such choice determines a rather highdw relative todsaw.

We also obtained results for random fractal walls. Unlike the case of deterministic walls
above, this problem cannot be solved exactly, even on hierarchical lattices. However, quantities
like 〈M〉n and 〈N〉n, which now have to be also averaged over wall randomness (overbar
represents this average), can also be calculated quite accurately for very large system sizes
by a Monte Carlo approach [11, 12, 17]. We performed these calculations forLC with walls
obtained by random combined applications of the rules in figures 3(c) and (d). At any level of
lattice construction, we choose whether the wall is realized by the rules depicted in figures 3(c)
or (d) with probabilities 1− 1 and1 (1 < 1), respectively. Of course, this determines
which of the two generating functions,X2 (equation (12)) andX3 (equation (13)), has to be
used in order to calculateXn+1 in terms ofXn. For 0< 1 < 1 the wall has, on average, a
fractal dimensiondw = ln(6 + 21)/ ln 4. Xn now becomes a random variable and we must
consider its probability distribution. Of course, we can only produce a finite sampling of this
distribution, by proceeding as follows. From a large set (up to 4× 105 elements){Xn} of nth
level partition values we generate each element of the new sample{Xn+1} by choosing first,
with the appropriate probabilities, between rules (12) and (13); then from{Xn} are extracted,
at random, the elements needed as entries into (12) or (13), and an elementXn+1 of the new
sample is computed as a function of them and ofBn. Using some numerical tricks to control
the possible rapid divergence of the partition functions near the transition, we could iterate this
procedure up ton = 30–35.

By analysing the scaling of〈M〉n and〈N〉n at the transition point (which now has to be
numerically determined) as a function ofLn, we could estimateφ for different1s as reported in
figure 4. Even if the relative poorness of the samplings causes appreciable uncertainty in theφ

determinations (figure 4), we see that this exponent stabilizes for1 > 1
2 to a value compatible

with the upper limitφ = 1. The results are consistent with the scenario for deterministic walls.
In particular,1 = 1

2 corresponds todw = 1.404, extremely close tod∗w ' 1.4 applying in that
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Figure 4. φ as a function of1 for SAW adsorption on random fractal walls inLC . φ values at
1 = 0 and1 = 1 (closed circles) are exact.

case. All this suggests that first-order adsorption should also be expected with random fractal
walls, with the same thresholdd∗w as in the deterministic case.

4. Conclusions

Our most remarkable result here is the roughness induced change into first order of the
adsorption transition. Without any other changes in the polymer–wall interactions, high enough
dw make the adsorption transition discontinuous. This is found in all lattices considered,
although marginally inLA. The change in the nature of the transition takes place fordw
definitely larger thandsaw. In spite of the qualitative value of our model calculations, we can
hope that similar properties could hold in realistic situations, in both 2D and 3D.

The change into first order of the adsorption transition should be imputed to the fact that,
upon increasingdw, the drop in entropy associated to a localization of the polymer near the
wall, also increases. Even if it is not easy to give a precise meaning to the notion of distance of
a polymer from a fractal substrate, at qualitative level we can argue that the entropic repulsion
effect due to localization [18], should create a free-energy barrier, whose height and (long)
range certainly increase asdw gets larger. The rougher the surface, the more it limits the
configurations of the confined polymer. Thus, we can thinkd∗w as the maximum dimension for
which ‘tunnelling’ of the polymer can still occur continuously from the attractive free-energy
well at small distance to the unbound state at infinite distance across the barrier. Fordw > d∗w,
the ‘tunnelling’ becomes discontinuous because of the too large barrier (this means that the
SAW, right at the desorption point, is not delocalized yet, as occurs in continuum adsorption).

A mechanism like the qualitative one outlined above has been demonstrated and precisely
described for the phenomenon of wetting of self-affine rough substrates in 2D, which has some
analogies with our adsorption [12]. Indeed, in that case one finds that a fluctuating interface
depinns discontinuously from a rough substrate as soon as the roughness of the latter (measured
by its self-affinity exponentζw) exceedζ0, the exponent specifying the intrinsic roughness of
the interface in the bulk [11, 12]. The coincidence of the threshold roughness withζ0 (which
by analogy, would suggestdw = d∗w here) is a peculiar feature of the interfacial problem in 2D.
Indeed, for that problem, the possibility of a path–integral description in 1+1 dimensions allows
one to establish a correspondence with the 1D quantum tunnelling of a particle across a long
range repulsive potential barrier. It then turns out that a roughnessζw = ζ0 = 1

2 determines
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a decay of this potential right at the threshold for discontinuous tunnelling [12]. Our results
show that fractal wall roughness also leaves room for a continuous polymer adsorption when
dw > dsaw.
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